ЭКСПРЕССНЫЙ КОНТРОЛЬ ОРИЕНТАЦИИ КУБИЧЕСКИХ МОНОКРИСТАЛЛОВ

Н.Н.Потрахов, Р.Х.Осес, В.А.Лифшиц ООО«РДС лаб», СПб, Россия

ВВЕДЕНИЕ

Доклад посвящён вопросам контроля кристаллографической ориентации монокристаллов жаропрочных сплавов на основе никеля при производстве монокристальных турбинных лопаток методом направленной кристаллизации.

Экспрессное определение кристаллографической ориентации монокристаллов и величины разориентации субзёрен требуется при анализе стержней-заготовок, затравочных пластин, образцов-свидетелей и отдельных участков поверхности отливок [1].

Контроль ориентации образцов небольшого размера выполняют на дифрактометрах общего назначения в характеристическом излучении. Неразрушающий контроль участков на поверхности отливок на ДРОНах неосуществим, поэтому были предприняты попытки использовать съёмку по методу Лауэ. Созданы аппараты с двумерным детектором «Scorpio» (Rolls Royce, Англия) [2,3] и более современный «Galaxy» (Германия), выдающие и обрабатывающие лауэграммы «в режиме реального времени». Однако они предлагаются по цене, исключающей их широкое применение на моторостроительных предприятиях.

Положение изменилось, когда были разработаны двумерные позиционночувствительные детекторы на основе экрана с фотостимулируемым люминофором. Благодаря высокой разрешающей способности детектора, его можно расположить близко к точке съёмки, и за короткое время экспозиции получить чёткую лауэграмму.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Разработанная модификация установки ПРДУ «КРОС» (рис. 1) для определения ориентации образцов-монокристаллов по обратным лауэграммам (эпиграммам) включает в себя рентгенозащитную камеру (в которой размещены двухкоординатный столик образца и штатив, несущий блок «излучатель-детектор»), лазерный сканер для считывания дифракционной картины с плоского позиционно-чувствительного детектора, ПК со специализированным программным обеспечением. Острофокусная трубка мощностью 100 Вт позволяет за время 1-2 минуты зарегистрировать эпиграмму от участка образца диаметром 0,5-1,0 мм.

Рис. 1: Внешний вид дифракционной установки ПРДУ «КРОС»

Программное обеспечение решает задачу автоматического распознавания лауэ-рефлексов, определения ИХ координат И преобразования эпиграммы стереографическую проекцию. Начальное совмещение экспериментальной стереограммы с стандартной стереограммы ГЦК кристалла производится «Повороты» стандартной сетки относительно трёх координатных осей оператором. осуществляются путём пересчёта сферических координат всех узлов сетки. Когда лауэ-узоры совпали, это означает, что индексы НКL зарегистрированных рефлексов определены. Параметры оптимального совмещения для всей совокупности пар пятен программа находит автоматически. Отслеживаются повороты системы координат [4], связанной со стандартной сеткой, относительно приборной системы координат, и положение кристаллографических осей монокристалла выдаётся в форме матриц направляющих косинусов.

Телесный угол, в котором находятся регистрируемые нормали к отражающим плоскостям, примерно соответствует единичному треугольнику «100-110-111» кубической системы, поэтому оператор в большинстве случаев может сразу распознать характерное расположение рефлексов и быстро подвести соответствующий фрагмент теоретической стереограммы к экспериментальной стереограмме. Но из-за того, что центральная часть стереограммы занята отверстием для коллиматора первичного пучка, и на стереограмме присутствуют части двух (или большего числа) единичных треугольников, нужный фрагмент узора иногда приходится находить методом проб и ошибок.

Для определения разориентировки субзёрен требуется, чтобы перемещение образца от одной точки съёмки к другой выполнялось строго поступательно, без угловых перемещений. В ПРДУ «КРОС» это обеспечивается использованием координатного столика.

Согласно оценкам, при совмещении 15-20 пар узлов экспериментального лауэ-узора с теоретическим средняя ошибка для пары совмещаемых узлов составляет порядка 0,2°. Это характеризует точность определения координат рефлексов при обработке эпиграммы. Сама процедура финишного автоматического совмещения узоров совершается с воспроизводимостью около 0,1° (Рис.2). Точность измерений ориентации должна быть определена путём параллельных съёмок специально подобранных образцов на дифрактометре.

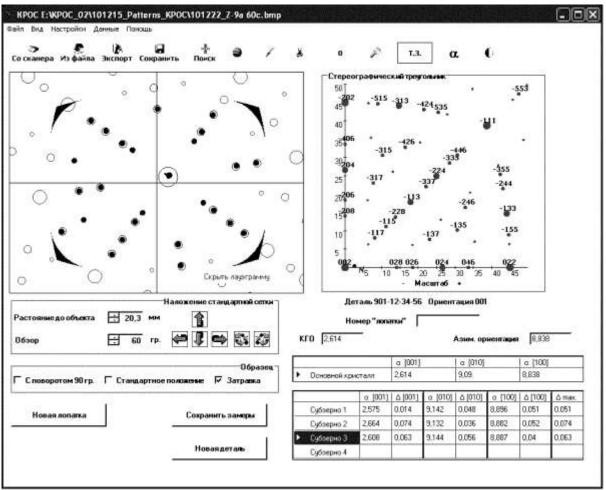


Рис.2: Рабочее окно программы КРОС. В таблице показана воспроизводимость процедуры совмещения лауэ-узоров при повторных запусках.

ВЫВОДЫ

Разработана и внедряется на предприятиях установка ПРДУ «КРОС» для экспрессного анализа ориентации образцов монокристаллов жаропрочных сплавов. Цена установки почти на порядок ниже, чем у импортных аппаратов, которые при решении конкретных задач контроля турбинных лопаток дают информацию примерно того же объёма.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сидохин Ф.А., Сидохин А.Ф., Сидохин Е.Ф. Об определении кристаллографической ориентации монокристаллов методом Лауэ. «Заводская лаборатория», 2009, т.75, №1, с.35
- 2. Higginbotham G.J.S. From research to cost-effective directional solidification and single-crystal production an integrated approach. «Mater.Science and Technol.», May 1986, V.2, p.442
- 3. Jones A.T., Baxter C. The Rolls Royce «Scorpio» system. «Meas.Sci.Technol.» V.6 (1995) p.131
- 4. Шереметьев И.А., Белинский С.Н. Стереографическая ЭВМ-система «Pilot-96» для анализа лауэграмм кубических кристаллов. Вестн. Челяб. ун-та, Сер.6, Физика, 1998, №1(2), с.77

(Тезисы к конференции РОНКТД в Самаре 6-8 сентября 2011г. : potrakhov_N_N_.doc)